Introduction to Oracle9i: PL/SQL

Additional Practices

40054GC10
Production 1.0
June 2001
D32947

ORACLE"

Authors

Nagavalli Pataballa
Priya Nathan

Technical Contributors

and Reviewers

AnnaAtkinson
Bryan Roberts
Caroline Pereda
Cedjas Zarco
Chaya Rao

Coley William
Daniel Gabel

Dr. Christoph Burandt
Hakan Lindfors
Helen Robertson
John Hoff

Judy Brink
Lachlan Williams
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Natarajan Senthil
Priya Vennapusa
Robert Squires
Roger Abuzalaf
Ruediger Steffan
Sarah Jones
Stefan Lindblad
Sue Onraget

Susan Dee

Publisher
Sandya Krishna

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate Ill (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Additional
Practices

Introduction to Oracle9i: PL/SQL - Additional Practices - 2

Additional Practices Overview

These additional practices are provided as a supplement to the course Introduction to Oracle9i:
PL/SQL. In these practices, you apply the concepts that you learned in Introduction to Oracle9i:
PL/SQL.

The additional practices comprise of two parts:

Part A provides supplemental practicein declaring variables, writing executable statements, interacting
with the Oracle server, writing control structures, and working with composite data types, cursors and
handle exceptions. In part A, you also create stored procedures, functions, packages, triggers, and use
the Oracle-supplied packages with i SQL* Plus as the devel opment environment. The tables used in this
portion of the additional practicesinclude EMPLOYEES, JOBS, JOB_HI STCRY, and
DEPARTMENTS.

Part B is a case study which can be completed at the end of the course. This part supplements the
practices for creating and managing program units. The tables used in the case study are based on a
video database and contain thetables TI TLE, TI TLE_COPY, RENTAL, RESERVATI QN, and
MVEMBER.

An entity relationship diagram is provided at the start of part A and part B. Each entity relationship
diagram displays the table entities and their relationships. More detailed definitions of the tables and
the data contained in each of the tablesis provided in the appendix Additional Practices: Table
Descriptions and Data.

Introduction to Oracle9i: PL/SQL - Additional Practices - 3

Part A: ENTITY RELATIONSHIP DIAGRAM

Human Resources

HR

JOB_HISTORY
employee_id
start_date
end date
joo id
department_id

N
i
1

JOBS
job_id
jok_title
min_salary
May_salary

DEPARTMENTS
department_id
department_name
manage” id
location_id

h

EMPLOYEES
employee_id
first_name
last_name
emalil
phone _numnber
hire_date
job_id
salary
Commissian_pct
manage_id
department_id

LOCATIONS
location_id
street_address
postal code
City
State province
country_id

-

COUNTRIES
country_id
country_name
region_id

d

REGIONS
region_id
region_name

Introduction to Oracle9i: PL/SQL - Additional Practices -4

Part A

Note: These exercises can be used for extra practice when discussing how to declare variables and
write executable statements.

1. Evauate each of the following declarations. Determine which of them are not legal and explain

why.
a DECLARE
v_nane, v_dept VARCHAR2(14) ;
b. DECLARE
v_test NUMBER(5) ;
c. DECLARE
V_MAXSALARY NUMBER(7, 2) = 5000;
d. DECLARE
V_JO NDATE BOOLEAN : = SYSDATE;
2. In each of the following assignments, determine the data type of the resulting expression.
a v_emil :=v_firstnane || to_char(v_enpno);
b. v _confirm:= to_date(’20-JAN 1999, ' DD MON- YYYY');
c. v_sal := (1000*12) + 500
d v_test := FALSE
e v_tenp :=v_tenpl < (v_temp2/ 3);
f. v_var := sysdate;

Introduction to Oracle9i: PL/SQL - Additional Practices -5

Part A

3. DECLARE
v_custid NUVBER(4) := 1600;
v_custname VARCHAR2(300) := 'Wnen Sports Cub’;
v_new custi d NUVMBER(3) := 500;
BEG N
DECLARE
v_custid NUMBER(4) : = 0;
v_custname VARCHAR2(300) := 'Shape up Sports Cub’;
v_new custid NUMBER(3) := 300;
v_new cust name VARCHAR2(300) := 'Jansports dub’;
BEG N
v_custid := v_new custid;
v_custnanme := v_custnanme || * ' || v_new_custnane;
O—=
END;
v_custid := (v_custid *12) / 10;
D=
END;
/

Evaluate the PL/SQL block above and determine the data type and value of each of the following variables
according to the rules of scoping:

a. Thevaueof V_CUSTI Dat position 1 is:
Thevaue of V_CUSTNAME at position 1is:
Thevaueof V_NEW CUSTI D at position 2is:
Thevaue of V_NEW CUSTNAME at position 1is:
Thevaueof V_CUSTI Dat position 2is:
Thevalue of V_CUSTNAME at position 2is:

-~ o a0 o

Note: These exer cises can be used for extra practice when discussing how to interact with the Oracle
server and write control structures.

4. Write a PL/SQL block to accept ayear and check whether it isaleap year. For example, if the year
entered is 1990, the output should be “1990 is not a leap year.”

Hint: The year should be exactly divisible by 4 but not divisible by 100, or it should be divisible by 400.

Introduction to Oracle9i: PL/SQL - Additional Practices - 6

Part A
Test your solution with the following years:

1990 Not aleap year
2000 Leap year

1996 Leap year

1886 Not aleap year
1992 Leap year

1824 Leap year

old 20V _YEAR MNUMEBEE4) = &F YEAE;
new 20V _YEAR NUMBEE(4) = 1990,
1990 15 not a leap year

PLISQL procedure successfully completed.

5. a. For the exercises below, you will require atemporary table to store the results. Y ou can either create
the table yoursdlf or runthel abAp_ 5. sql script that will create the table for you. Create a table named
TEMP with the following three columns:

Column Name NUM_STCORE CHAR_STORE DATE_STORE

Key Type
Nulls/Unique
FK Table
FK Column
Datatype Nurrber VARCHAR2 Dat e

Length 7,2 35

b. WriteaPL/SQL block that contains two variables, MESSAGE and DATE_WRI TTEN.
Declare MESSACE as VARCHAR2 datatype with alength of 35 and DATE_WRI TTEN as
DATE datatype. Assign the following values to the variables:

Variable Contents
VESSAGE ‘This is my first PL/SQL program’
DATE_WRI TTEN Current date
Store the values in appropriate columns of VP table. Verify your results by querying the
TEMP table.
NUM_STORE CHAR_STORE DATE STOR
This is my first PLS0L Program 20-hAAR-01

Introduction to Oracle9i: PL/SQL - Additional Practices -7

Part A

6.

8.

Write aPL/SQL block to store a department number in aiSQL* Plus substitution variable and print

the number of people working in that department.

Hint: Enable DBMS_OUTPUT iniSQL*Pluswith SET SERVEROUTPUT ON.

old 3 WV_DEPTNO DEPARTMENTS. department 1d% TYPE = &P_DEPTINO,
new 3:%W_DEPTINO DEPARTMENTS department 1% TYPE = 30,

& emplovee(s) worl for department number 20

PLIZOL procedure successfilly completed.

Write aPL/SQL block to declare avariable caled v_sal ar y to store the salary of an employee. In

the executabl e part of the program, do the following:

Note: Undefine the variable that stores the employee’s name at the end of the script.

Write a PL/SQL block to store the salary of an employee iB@h*Plus substitution variable.
In the executable part of the program do the following:

Store an employee name in&@QL*Plus substitution variable

Store his or her salary in the variablesal ary

If the salary is less than 3,000, give the employee a raise of 500 and display the message
'<Employee Name>'s salary updated' in the window.

Test the PL/SQL for the following last names:

LAST NAME SALARY
Pat abal | a 4800
G eenberg 12000
Er nst 6000

Calculate the annual salary as salary * 12.

Calculate the bonus as indicated below:

Annual Salary Bonus
>= 20,000 2,000
19,999 - 10,000 1,000
<=9,999 500

Display the amount of the bonus in the window in the following format:
‘The bonusis $.................... :

Introduction to Oracle9i: PL/SQL - Additional Practices - 8

Part A
» Test the PL/SQL for the following test cases:

SALARY BONUS
5000 2000
1000 1000
15000 2000

Note: These exercises can be used for extra practice when discussing how to work with composite
data types, cursorsand handling exceptions.

9. Write a PL/SQL block to store an employee number, the new department number, and the percentage
increase in the salary iBQL*Plus substitution variables. Update the department ID of the employee
with the new department number, and update the salary with the new salary. Elge thkle for the
updates. Once the update is complete, display the message, 'Update complete' in the window. If no
matching records are found, display ‘No Data Found'. Test the PL/SQL for the following test cases:

EMPLOYEE | D | NEW DEPARTMEN | % | NCREASE | MESSAGE
T ID

100 20 2 Updati on
Conmpl et e

10 30 5 No Dat a
f ound

126 40 3 Updati on
Conmpl et e

Introduction to Oracle9i: PL/SQL - Additional Practices -9

Part A
10. Create a PL/SQL block to declare a cursor EMP_CUR to select the employee name, salary, and hire
date from the EMPLOYEES table. Process each row from the cursor, and if the salary is greater than

15,000 and the hire date is greater than 01-FEB-1988, display the employee name, salary, and hire date
in the window in the format shown in the sample output bel ow:

Eochhar earns 17000 and joined the orgamzation on 21-SEP-89
De Haan earns 17000 and jomned the organization on 13-JATT-93
PLISOL procedure successfully completed.

11. Create a PL/SQL block to retrieve the last name and department 1D of each employee from the
EMPLOYEES table for those employees whose EMPLOYEE | D islessthan 114. From the values
retrieved from the EMPLOYEES table, populate two PL/SQL tables, one to store the records of the
employee last names and the other to store the records of their department 1Ds. Using aloop, retrieve
the employee name information and the salary information from the PL/SQL tables and display it in
the window, using DBMS_QUTPUT. PUT_LI NE. Display these details for the first 15 employeesin
the PL/SQL tables.

Emplovee Mame: Eing Department 1d: 90
Emplovee Mame: Eochhar Department 1d: 90
Emplovee Mame: D'e Haan Department 1d: 90
Emplovee Mame: Huneld Department 1d: 60
Employee Mame: Emst Department_1d: 60
Employee Mame: Austin Department id: 60
Emplovee Mame: Pataballa Departtnent 1d: 60
Emplovee Mame: Lorentz Department 1d: &0
Emplovee Mame: Greenberg Department_1d: 100
Emplovee Mame: Fawiet Departtnent 1d: 100
Employee Mame: Chen Department 1d: 100
Employee Mame: Sciarra Department 1d: 100
Emplovee Mame: Urman Depatrtrnent 1d: 100
Emplovee Mame: Popp Departtnent 1d: 100
Emplovee Mame: Eaphaely Department 1d: =0
PLAZOL procedure successfully completed.

Introduction to Oracle9i: PL/SQL - Additional Practices - 10

Part A

12. Create aPL/SQL block that declares acursor called DATE CUR. Pass a parameter of DATE data
type to the cursor and print the details of al employees who have joined after that date.

DEFI NE P_H REDATE = 08- MAR- 00

166 Ande 24-WAE-00
167 Banda 21-APE-00
173 Kumar 21-AFE.-00
PLASOQL procedure successfully completed.

Test the PL/SQL block for the following hire dates: 25- JUN- 97, 28- SEP- 98, 07- FEB- 99

13. Create aPL/SQL block to promote clerks who earn more than 3,000 to thejob title SR CLERK and
increase their salary by 10%. Usethe EMP table for this practice. Verify the results by querying on
the EMP table. Hint: Use acursor with FOR UPDATE and CURRENT OF syntax.

14. a. For the exercise below, you will require atable to store the results. Y ou can create the ANALYSI S
table yourself or runthel abAp_14a. sql script that creates the table for you. Create atable called
ANALYSI S with the following three columns:

Column Name ENAME YEARS SAL
Key Type
Nulls/Unique
FK Table

FK Column
Datatype VARCHAR2 Nunber Nunber

Length 20 2 8,2

b. Create aPL/SQL block to populate the ANALYSI S table with the information from the
EMPLOYEES table. Use an iSQL*Plus substitution variable to store an employee’s last name. Query
the EMPLOYEES table to find if the number of years that the employee has been with the
organization is greater than five, and if the salary is less than 3,500, raise an exception. Handle the
exception with an appropriate exception handler that inserts the following values into the
ANALYSI S table: employee last name, number of years of service, and the current salary. Otherwise
displayNot due for a rai se inthe window. Verify the results by querying tARALYSI S
table. Use the following test cases to test the PL/SQL block:

LAST_NAME MESSAGE

Austin Not due for a raise
Nayer Not due for a raise
Fripp Not due for a raise
Khoo Due for a raise

Introduction to Oracle9i: PL/SQL - Additional Practices - 11

Part A
Note: These exercises can be used for extra practice when discussing how to create procedures.

15. Inthis practice, create a program to add a new job into the JOBS table.
a. Create a stored procedure called ADD_J OBS to enter anew order into the JOBS table.

The procedure should accept three parameters. The first and second parameters suppliesajob ID
and ajob title. The third parameter supplies the minimum salary. Use the maximum salary for the
new job as twice the minimum salary supplied for the job ID.

b. Disablethetrigger SECURE_DM._ before invoking the procedure. Invoke the procedure to add a
new job with job ID SY_ANAL, jobtitle Syst em Anal yst , and minimum salary of 6,000.

c. Verify that arow was added and remember the new job ID for use in the next exercise.
Commit the changes.

| JOB_ID | JOB_TITLE |MIN_SALARY |[MAX_SALARY
|SY_ANAL |System Analyst | G000 | 12000

16. Inthispractice, create a program to add a new row to the JOB_HI STORY table for an existing
employee.

Note: Disable all triggers on the EMPLOYEES, JOBS, and JOB_HI STORY tables before invoking

the procedure in part b. Enable all these triggers after executing the procedure.

a. Create astored procedure called ADD _JOB_HI ST to enter anew row intothe JOB_HI STORY
table for an employee who is changing his job to the new job ID that you created in question 15b.

Use the employee ID of the employee who is changing the job and the new job ID for the
employee as parameters. Obtain the row corresponding to this employee ID from the
EMPLOYEES table and insert it into the JOB_HI STORY table. Make hire date of this employee
asthe start date and today’s date as end date for thisrow inthe JOB_HI STORY table.

Change the hire date of this employee in the EMPLOYEES table to today’s date. Update the job
ID of this employeeto the job ID passed as parameter (Use the job ID of the job created in
guestion 15b) and salary equa to minimum salary for that job ID + 500.

Include exception handling to handle an attempt to insert a nonexistent employee.
b. Disable triggers (See the note at the beginning of this question.)
Execute the procedure with employee ID 106 and job ID SY_ANAL as parameters.
Enable the triggersthat you disabled.
c. Query thetablesto view your changes, and then commit the changes.

[EMPLOYEE_ID |[START_DAT [END_DATE |JOB_ID |DEPARTMENT_ID
| 106 [D5-FEB-93 [D4-MAY-01 IT_PROG | B0

| JOB_ID | SALARY
S _AMAL | B500

Introduction to Oracle9i: PL/SQL - Additional Practices - 12

Part A

17. Inthis practice, create a program to update the minimum and maximum salariesfor ajobin
the JOBS table.

a. Create a stored procedure called UPD_SAL to update the minimum and maximum salaries
for aspecific job ID in the JOBS table.

Pass three parameters to the procedure: the job 1D, anew minimum salary, and a new
maximum salary for the job. Add exception handling to account for an invalid job ID in the
JOBS table. Also, raise an exception if the maximum salary supplied isless than the

minimum salary. Provide an appropriate message that will be displayed if the row in the
JOBS tableislocked and cannot be changed.

b. Execute the procedure. Y ou can use the following data to test your procedure:
EXECUTE upd_sal (' SY_ANAL’, 7000, 140)

ERROR ... MAX SAL SHOULD BE » MIN SAL
BEGIN upd_sal (3Y_ANAL', 7000, 140y, END;
*

ERROR at line 1:

OFA-20001: Drata error. Ifax salary should be more than min salary
ORA-06512; at "SHY.UPD_3ALY, line 32

ORA-06512: at line 1

EXECUTE upd_sal (' SY_ANAL', 7000, 14000)
PLAAOL procedure successfully completed.

c. Query the JOBS table to view your changes, and then commit the changes.

JOB_ID JOB TITLE MIN_SALARY | MAX SALARY
=7 _AMAL |System Analyst 7000 14000

Commit complete.

18. Inthispractice, create a procedure to monitor whether employees have exceeded their average
saary limits.
a. Add acolumn to the EMPLOYEES table by executing the following command: (| abaddA_4. sql)
ALTER TABLE enpl oyees
ADD (sal _limt_indicate VARCHAR2(3) DEFAULT ' NO
CONSTRAI NT enp_sal i mt_ck CHECK
(sal _limt _indicate IN (' YES, "NO)));

b. Write astored procedure called CHECK AVG_SAL. This checks each employee's average
salary limit from the J OBS table against the salary that this employee hasin the EMPLOYEES
table and updatesthe SAL_LI M T_I NDI CATE column in the EMPLOYEES table when this
employee has exceeded his average salary limit.

Create a cursor to hold employee IDs, saaries, and their average salary limit. Find the average
salary limit possible for an employee's job from the J OBS table. Compare the average salary

limit possible for each employee to exact salaries and if the salary is more than the average sdary
limit, set the employee’SAL_LI M T_| NDI CATE column toYES; otherwise, set it tdlO.

Add exception handling to account for a record being locked.

Introduction to Oracle9i: PL/SQL - Additional Practices - 13

Part A
c. Executethe procedure, and then test the results.
Query the EMPLOYEES table to view your modifications, and then commit the changes.

| JOB_ID | MIN_SALARY | SALARY | MAX_SALARY
ISY_ANAL | 7000 | 7000 | 14000

Note: These exercises can be used for extra practice when discussing how to create functions.
19. Create a program to retrieve the number of years of service for a specific employee.
a. Create astored function called GET_SERVI CE_ YRS to retrieve the total number of years
of service for a specific employee.
The function should accept the employee ID as a parameter and return the number of years
of service. Add error handling to account for an invalid employee ID.
b. Invoke the function. Y ou can use the following data:
EXECUTE DBMs OUTPUT. PUT_LI NE(get _service_yrs(999))

Hint: The above statement should produce an error message because there is no employee
with employee ID 999.

EXECUTE DBM5S OUTPUT. PUT_LINE (' Approximately " ||

get _service yrs(106) || ' years’)
Hint: The above statement should be successful and return the number of years of service
for employee with employee ID 106.

c. Query theJOB_HI STORY and EMPLOYEES tables for the specified employee to verify
that the modifications are accurate.

| EMPLOYEEID | JOB_ID | DURATION
| 102 |IT_PROG | 562876712
| 101 |AC_ACCOUNT | 410136926
| 101 |AC_MGR | 338082192
| 201 |MK_REP | 283835616
| 114 |ST_GLERK | 177260274
| 122 |ST_CLERK | 887260274
| 200 |AD_ASST | 575342466
| 176 |54_REF | 7760274
| 176 |SA_MAN | 887260274
| 200 |AC_ACCOUNT | 450410953
| 106 |IT_PROG | 3.24556171

11 rows selected.

| JOB_ID | DURATION

|SY_ANAL | 000082714

Introduction to Oracle9i: PL/SQL - Additional Practices - 14

Part A

20. Inthis practice, create a program to retrieve the number of different jobs that an employee worked
during his service.

a. Create astored function called GET_JOB_COUNT to retrieve the total number of different
jobs on which an employee worked.

The function should accept one parameter to hold the employee ID. The function will return
the number of different jobs that employee worked until now. This also includes the present
job. Add exception handling to account for an invalid employee ID.

Hint: Verify distinct job IDs from the JOB_HI STORY table. Verify whether the current
job ID is one of the job IDs on which the employee worked.

b. Invoke the function. You can use the following data:

EXECUTE DBMs_ OUTPUT. PUT_LI NE(' Enpl oyee worked on ’ ||
get _job_count(176) || ' different jobs.")

Emplogyee worked on 2 different jobs.
PLAAOL procedure successfully completed.

Note: These exercises can be used for extra practice when discussing how to create packages

21. Create a package specification and body called EMP_JOB_PKGthat contains your

ADD JOBS, ADD JOB HI ST, and UPD_SAL procedures aswell asyour GET_SERVI CE_YRS
function.

a. Makeall the constructs public. Consider whether you till need the stand-alone procedures
and functions that you just packaged.

b. Disableal the triggers before invoking the procedure and enable them after invoking the
procedure, as suggested in question 16b.

Invoke your ADD_J OBS procedureto create a new job with ID PR_MAN, job title Publ i ¢
Rel ati ons Manager , and salary of 6,250.

Invoke your ADD_JOB_HI ST procedure to modify the job of employee with employee ID
110tojob ID PR_MAN.

Hint: All of the above cdls to the functions should be successful.
c. QuerytheJOBS, JOB_HI STORY, and EMPLOYEES tables to verify the results.

| JOB_ID | JOB_TITLE IMIN_SALARY [MAX_SALARY
IPR_MAMN Public Relations Manager | 6250 | 12500

|[EMPLOYEE_ID |[START_DAT [END_DATE| JOB_ID |DEPARTMENT_ID
| 110 [28-3EP-97 [04-MAY-01 |FI_ACCOUNT | 100

| JOB_ID | SALARY
IPR_MAN | 6750

Introduction to Oracle9i: PL/SQL - Additional Practices - 15

Part A

Note: These exercises can be used for extra practice when discussing how to use Or acle-supplied

packages:

22. Inthispractice, use an Oracle-supplied package to schedule your GET_JOB_COUNT

function to run semiannually.
a. Create an anonymous block to call the DBMS_J OB Oracle-supplied package.

Invoke the package function DBMS_JOB. SUBM T and pass the following four parameters: a
variable to hold the job number, the name of the subprogram you want to submit, SYSDATE as
the date when the job will run, and an interval of ADDMONTHS(SYSDATE + 6) for
semiannual submission.

Note: To forcethejob to run immediately, call DBM5_JOB. RUN(your _j ob_nunber) after
calling DBMS_JOB. SUBM T, . This executes the job waiting in the queue.
Execute the anonymous block.

b. Check your results by querying the EMPLOYEES and JOB_HI STCORY tables and querying the
USER_JOBS dictionary view to see the status of your job submission.
Y our output should appear similar to the following output:

JOB WHAT SCHEMA_USER |LAST_DATE NEXT_DATE INTERVAL

BEGIM
1 |DBEMS_OUTPUTPUT_LIME |SH4 04-mAY-01 |04-BOV-01
foet_joh_count01 100 EMD:

ADD_MOMTHES(SYSDATE,
B)

Note: These exercises can be used for extra practice when discussing how to create database
triggers.

23. Inthis practice, create atrigger to ensure that the job ID of any new employee being hired to
department 80 (the Sales department) is a sales manager or representative.

a. Disable dl the previoudly created triggers as discussed in question 16b.
b. Createatrigger called CHK_SALES JOB.

Fire the trigger before every row that is changed after insertions and updatesto the JOB_| D
column in the EMPLOYEES table. Check that the new employee hasajob ID of SA_MAN or

SA REP in the EMPLOYEES table. Add exception handling and provide an appropriate message
so that the update failsif the new job ID is not that of a sales manager or representative.

c. Testthetrigger. You can use the following data:

UPDATE enpl oyees
SET job_id = ' AD VP
VWHERE enpl oyee_id = 106;
UPDATE enpl oyees
SET job_id =" AD VP
VWHERE enpl oyee_id = 179;
UPDATE enpl oyees
SET job_id = ' SA MAN
WHERE enpl oyee id = 179;

Hint: The middle statement should produce the error message specified in your trigger.
Introduction to Oracle9i: PL/SQL - Additional Practices - 16

Part A
d. Query the EMPLOYEES table to view the changes. Commit the changes.

| JOB_ID | DEPARTMENT ID | SALARY
SA_MAN | a0 | E200

e. Enableall thetriggersthat you previoudly disabled, as discussed in question 16b.

24. Inthispractice, create atrigger to ensure that the minimum and maximum salaries of ajob are
never modified such that the salary of an existing employee with that job ID is out of
the new range specified for the job.

a. Createatrigger called CHECK _SAL _RANGE.

Fire the trigger before every row that is changed when datais updated inthe M N_SALARY and
MAX_SALARY columnsin the JOBS table. For any minimum or maximum salary valuethat is
changed, check that the salary of any existing employee with that job ID in the EMPLOYEES
table falls within the new range of salaries specified for thisjob ID. Include exception handling
to cover a salary range change that affects the record of any existing employee.

b. Testthetrigger. You can use the following data:
SELECT * FROM jobs WHERE job_id = ' SY_ANAL’;

| JOB_ID [JOB_TITLE |MIN_SALARY [MAX_SALARY

|SV_ANA|_

system |

[F0oo ‘ 14000

SELECT enpl oyee id, job_id, salary
FROM enpl oyees
WHERE job_id = ' SY_ANAL’;

UPDATE j obs

SET min_salary = 5000, max_salary = 7000
VWHERE job_id = ' SY_ANAL’;

UPDATE | obs
SET min_salary = 7000, max_salary = 18000

WHERE job_id =’ SY _ANAL’;

Introduction to Oracle9i: PL/SQL - Additional Practices - 17

Part B: Entity Relationship Diagram

(TITLE)

RESERVATION
#* reservation date

for *
| N

I the subject * description
of o rating

responsible

/_setup fo

for

-

MEMBER
#* 1D

* last name
o first name
0 address

0 City

0 phone

* join date

r 0 category
o release date

g J
[
| available as

a copy

TITLE_COPY
#* 1D
* status

[
| the subject of
[

made against

responsible RENTAL
for _ _ #* book date

0 act ret date
0 exp ret date

create
for

Introduction to Oracle9i: PL/SQL - Additional Practices - 18

Part B

In this exercise, create a package named VI DEOthat contains procedures and functions for avideo
store application. This application allows customers to become a member of the video store. Any
members can rent movies, return rented movies, and reserve movies. Additionally, create atrigger to
ensure that any dataiin the video tablesis modified only during business hours.

Create the package using i SQL* Plus and use the DBM5_OUTPUT Oracle supplied package to display
messages.

The video store database contains the following tables: TI TLE, TI TLE COPY, RENTAL,
RESERVATI ON, and MEMBER. The entity relationship diagram is shown on the facing page.

Introduction to Oracle9i: PL/SQL - Additional Practices - 19

Part B

Run the script bui | dvi d1. sql to create al of the required tables and sequences needed for
this exercise.

Run the script bui | dvi d2. sqgl to populate al the tables created through by the script
bui | dvi d1. sql

1

Create a package named VI DEOwith the following procedures and functions:

a

NEW MEMBER: A public procedure that adds a new member to the MEMBER table. For
the member ID number, use the sequence MEMBER | D_SEQ for the join date, use
SYSDATE. Pass dl other valuesto be inserted into a new row as parameters.

NEW RENTAL: An overloaded public function to record a new rental. Passthetitle ID
number for the video that a customer wants to rent and either the customer’s last name or
his member ID number into the function. The function should return the due date for the
video. Due dates are three days from the date the video is rented. If the status for a
movie requested is listed A¥AlI LABLE in theTl TLE_COPY table for one copy of

this title, then update thisl TLE_COPY table and set the statusRENTED. If there is

no copy available, the function must rettddLL. Then, insert a new record into the
RENTAL table identifying the booked date as today's date, the copy ID number, the
member ID number, the title ID number and the expected return date. Be aware of
multiple customers with the same last name. In this case, have the functiomtétlirn
and display a list of the customers' names that match and their ID numbers.

RETURN_MOVI E: A public procedure that updates the status of a video (available,

rented, or damaged) and sets the return date. Pass the title ID, the copy ID and the status
to this procedure. Check whether there are reservations for that title, and display a
message if it is reserved. Update RiENTAL table and set the actual return date to

today’'s date. Update the status in TheLE_COPY table based on the status parameter
passed into the procedure.

RESERVE_MOVI E: A private procedure that executes only if all of the video copies
requested in thBEW RENTAL procedure have a statusRENTED. Pass the member

ID number and the title ID number to this procedure. Insert a new record into the
RESERVATI ONtable and record the reservation date, member ID number, and title ID

number. Print out a message indicating that a movie is reserved and its expected date of
return.

EXCEPTI ON_HANDLER: A private procedure that is called from the exception handler

of the public programs. Pass to this proceduré&S@eCODE number, and the name of

the program (as a text string) where the error occurred. Use

RAI SE_APPLI CATI ON_ERRORto raise a customized error. Start with a unique key
violation (-1) and foreign key violation

(-2292). Allow the exception handler to raise a generic error for any other errors.

Introduction to Oracle9i: PL/SQL - Additional Practices - 20

Part B

Y ou can use the following data to test your routines:

EXECUTE vi deo. new_nenber

(' Haas’, 'Janes’, 'Chestnut Street’, 'Boston’, ’'617-123-
4567)

FPLAZOL procedure successhully completed.

EXECUTE vi deo. new_nemnber
('Biri’, "Allan’, 'Hi awatha Drive’, 'New York’, '516-123-4567")

FPLAZOL procedure successhully completed.

EXECUTE DBMs_OUTPUT. PUT_LI NE(vi deo. new _rental (110, 98))

05-MAR-01
PLISCQL procedure successfully completed,

EXECUTE DBMs_OUTPUT. PUT_LI NE(vi deo. new_rental (109, 93))

05-MAR-01
PLISCQL procedure successfully completed,

EXECUTE DBMs_OUTPUT. PUT_LI NE(vi deo. new_rental (107, 98))

Mowe reserved. Expected back on: 05-WAR-01
PLIZOQL procedure successfully completed.

EXECUTE DBMs_OUTPUT. PUT_LI NE(vi deo. new rental ("Biri’, 97))

Warning| MMore than one member by this name.
111 Bin, Allan

108 Bin, Ben

PLISQL procedure successfully completed.

EXECUTE DBMS_ OUTPUT. PUT LI NE(vi deo. new _rental (97, 97))
BEGIMN DEM: OUTPUT PUT _LINE(wdes new_rental(97, 275 ED,

= o

EEEROE at line 1:

OEA-20002: WEW EENTAT has

attemnpted to use a foreign key value that 15 mvalid
OEA-06512: at "PLPUVIDEOQ", line 13
OEA-06512: at "PLETTVIDED", line 120
OEA-06512: atline 1

Introduction to Oracle9i: PL/SQL - Additional Practices - 21

Part B

EXECUTE vi deo.return_novi e(98, 1, ’AVAILABLE)

Put this mowe on hold -- reserved by member #107
PLAZOL procedure successfully completed.

EXECUTE vi deo. return_novi e(95, 3, ’AVAILABLE)

PLIZOL procedure successtully completed.

EXECUTE vi deo.return_novi e(111, 1, ' RENTED)

BEGIM wideo return tnowe(111, 1, EENTED ", EINL;

=

EEROE. at line 1:

OEA-20999: Unhandled error in EETUEIN WOVIE. Please contact vour application
administrator with the following information: OFEA-01407%: no data found
COEA-06512: at "PLPTT VIDEOQ", line 16

COEA-06512: at "PLPTT VIDEQ", line 80

CEA-06512: at line 1

Introduction to Oracle9i: PL/SQL - Additional Practices - 22

Part B

3.

The business hours for the video store are 8:00 a.m. to 10:00 p.m., Sunday through Friday, and
8:00 am. to 12:00 am. on Saturday. To ensure that the tables can only be modified
during these hours, create a stored procedure that is called by triggers on the tables.

Create a stored procedure called TI ME_CHECK that checks the current time against business
hours. If the current time is not within business hours, use the RAI SE_APPLI CATI ON_ERROR
procedure to give an appropriate message.

Create atrigger on each of the five tables. Fire thetrigger before data is inserted, updated, and
deleted from the tables. Call your TI ME_CHECK procedure from each of these triggers.

Test your trigger.

Note: In order for your trigger to fail, you need to change the time to be outside the range of
your current timein class. For example, while testing, you may want valid video hoursin your
trigger to be from 6:00 p.m. to 8:00 am.

Introduction to Oracle9i: PL/SQL - Additional Practices - 23

Introduction to Oracle9i: PL/SQL - Additional Practices - 24

Additional
Practice
Solutions

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 2

Part A: Additional Practice 1 and 2 Solutions

1. Evauate each of the following declarations. Determine which of them are not legal and explain

why.
a DECLARE
v_nane, v_dept VARCHAR2(14) ;
Thisisillegal because only oneidentifier per declaration is allowed.
b. DECLARE
v_test NUMBER(5) ;
Thisislegal.
c. DECLARE
V_MAXSALARY NUMBER(7, 2) = 5000;

Thisisillegal because the assignment operator iswrong. It should be :=.
DECLARE
V_JO NDATE BOOLEAN : = SYSDATE;

Thisisillegal becausethereisa mismatch in the data types. A Boolean data type cannot be
assigned a date value. The data type should be date.

2. Ineach of the following assignments, determine the data type of the resulting expression.
a v emuil :=v_ firstname || to_char(v_enpno);

b.

C.

d.

e.

f.

Character string
v_confirm:= to_date(’ 20-JAN-1999', ' DD MON- YYYY');
Dat e

v_sal := (1000*12) + 500

Nunber

v_test := FALSE

Bool ean

v _tenp := v_tenpl < (v_tenmp2/ 3);
Bool ean

v_var := sysdate;

Dat e

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 3

Part A: Additional Practice 3 Solutions

3. DECLARE
v_custid NUVBER(4) := 1600;
V_cust nane VARCHAR2(300) := 'Wnen Sports dub’;
v_new custid NUMBER(3) := 500;
BEG N
DECLARE
v_custid NUMBER(4) := 0;
v_custnane VARCHAR2(300) := 'Shape up Sports dub’;
v_new custid NUMBER(3) := 300;
v_new_cust name VARCHAR2(300) := 'Jansports Cub’;
BEG N
v_custid := v_new custid;
v_custnane := v_custnane || * ' || v_new_custnane;
O >
END;
v_custid := (v_custid *12) / 10;
D=y
END;

/

Evaluate the PL/SQL block above above and determine the data type and value of each of the
following variables, according to the rules of scoping:

a. Thevdueof V_CUSTI Dat posiction 1 is:
300, and the data type is NUVMBER
b. Thevalueof V_CUSTNANME at position 1is:
Shape up Sports Club Jansports Club, and the data type is VARCHAR2
c. Thevaueof V_NEW CUSTI Dat position 1is:
500, and the data type isNUMBER (or | NTEGER)
d. Thevaueof V_NEW CUSTNAME at position 1is:
Jansports Club, and the data typeis VARCHAR2
e. Thevdueof V_CUSTI Dat position 2is:
1920, and the data typeis NUMBER
f. Thevaueof V_CUSTNANME at position 2is:
Women Sports Club, and the data typeis VARCHAR2

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions -4

Part A: Additional Practice 3 and 4 Solutions

4. WriteaPL/SQL block to accept ayear and check whether it is aleap year. For example, if the year
entered is 1990, the output should be “1990 is not a leap year”.

Hint: The year should be exactly divisible by 4 but not divisible by 100, or it should by
divisible by 400.

Test your solution with the following years:

1990 Not aleap year
2000 Leap year

1996 | Lesp year

1886 Not aleap year
1992 Leap year

1824 | Leap year

SET SERVEROUTPUT ON

DEFI NE p_year = 1990

DECLARE
V_YEAR NUMBER(4) := &P_YEAR,
V_RENMAI NDER1 NUMBER(5, 2);
V_RENMAI NDER2 NUMBER(5, 2);
V_RENMAI NDER3 NUMBER(5, 2);

BEG N
V_REMAI NDERL : = MOD(V_YEAR, 4);
V_REMAI NDER2 : = MOD(V_YEAR, 100);
V_REMAI NDER3 : = MOD(V_YEAR, 400) ;

| F ((V_REMAINDERL = 0 AND V_REMAI NDER2 <> 0)
OR V_REMAI NDER3 = 0) THEN

DBVS OQUTPUT. PUT _LINE(V_YEAR || ' is a |leap year’);
ELSE

DBMS_QUTPUT. PUT_LINE (V_YEAR || * is not a |eap year’);
END | F;

END;
/
SET SERVEROUTPUT OFF

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions -5

Part A: Additional Practice 5 Solutions

5. a. For the exercises below, you will require atemporary table to store the results. Y ou can either
create the table yourself or runthel abAp_5. sql script that will create the table for you. Create a
table named TEMP with the following three columns:

Column Name NUM_STORE CHAR_STORE DATE_STORE
Key Type
Nulls/Unigque
FK Table

FK Column
Datatype Nunber VARCHAR2 Dat e
Length 7,2 35

CREATE TABLE tenp
(num store NUMBER(7, 2),
char _store VARCHAR2(35),
date_store DATE);

b. Write a PL/SQL block that contains two variables, MESSAGE and DATE_WRI TTEN. Declare
MESSAGE as VARCHAR2 data type with alength of 35 and DATE_WRI TTEN as DATE datatype.
Assign the following values to the variables:

Variable Contents
VESSAGE Thisismy first PL/SQL program’
DATE WRI TTEN Current date
Store the values in appropriate columns of the TEMP table. Verify your results by querying
the TEMP table.
DECLARE

MESSAGE VARCHARZ2(35) ;
DATE_WRI TTEN DATE;
BEG N
MESSAGE := '"This is ny first PLSQ. Progran;
DATE_WRI TTEN : = SYSDATE;
| NSERT | NTO t enp(CHAR_STORE, DATE_STORE)
VALUES (MESSAGE, DATE_WRI TTEN) ;
END;
/
SELECT * FROM TEMP;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 6

Part A: Additional Practice 6 and 7 Solutions

6. WriteaPL/SQL block to store a department number in aiSQL* Plus substitution variable and print the
number of people working in that department.

Hint: Enable DBMS_QUTPUT iniSQL*Pluswith SET SERVEROUTPUT ON.
SET SERVEROUTPUT ON
DEFI NE P_DEPTNO = 30
DECLARE
V_COUNT NUMBER(3) ;
V_DEPTNO DEPARTMENTS. departnent i d9dYPE : = &P_DEPTNO
BEG N
SELECT COUNT(*) I NTO V_COUNT FROM enpl oyees
WHERE departnment _id = V_DEPTNG,

DBVMS _OUTPUT. PUT_LINE (V_COUNT || ' enployee(s) work for departnment
nunber ' || V_DEPTNO ;

END;

/

SET SERVERQUTPUT OFF

7. WriteaPL/SQL block to declareavariable caled v_sal ar y to store the salary of an employee. In the
executable part of the program, do the following:

» Store an employee name in@QL*Plus substitution variable
« Store his or her salary in the sal ar y variable

« If the salary is less than 3,000, give the employee a raise of 500 and display the message '<Employee
Name>'s salary updated' in the window.

« If the salary is more than 3,000, print the employee’s salary in the format, '<Employee Name> earns

» Test the PL/SQL for the following last names

Note: Undefine the variable that stores the employee’s name at the end of the script.
SET SERVEROUTPUT ON

DEFI NE P_LASTNAME = Pat abal | a
DECLARE

V_SALARY NUMVBER(7, 2);

V_LASTNAVE EMPLOYEES. LAST NAVEYYPE;

BEG N
SELECT sal ary | NTO V_SALARY
FROM enpl oyees
WHERE | ast_name = | NIl TCAP(’ &P _LASTNAVE') FOR UPDATE of sal ary;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions -7

Part A: Additional Practice 7 and 8 Solutions

V_LASTNAME : = | NI TCAP(' &P_LASTNAME') ;
| F V_SALARY < 3000 THEN
UPDATE enpl oyees SET salary = salary + 500

VWHERE | ast _name = | NI TCAP(’' &_LASTNAME') ;

DBVS_QUTPUT. PUT_LINE (V_LASTNAME || "'’ s salary updated’);
ELSE

DBMS_QUTPUT. PUT_LINE (V_LASTNAME || ' earns ' ||

TO_CHAR(V_SALARY)) ;
END | F;

END;

/

SET SERVEROUTPUT OFF

UNDEFI NE P_LASTNANE

8. WriteaPL/SQL block to store the salary of an employee in an i SQL* Plus substitution variable. In
the executabl e part of the program do the following:

 Calculate the annual salary as salary * 12.
 Calculate the bonus as indicated below:

Annual Salary Bonus
>= 20,000 2,000

19,999 - 10,000 1,000

<=9,999 500

» Display the amount of the bonus in the window in the following format:
‘The bonusis $.................... ’

SET SERVEROUTPUT ON

DEFI NE P_SALARY = 5000

DECLARE
V_SALARY NUMVBER(7,2) := &P_SALARY;
V_BONUS NUVBER(7, 2);
V_ANN_SALARY NUMVBER(15, 2);

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 8

Part A: Additional Practice 8 and 9 Solutions
BEG N
V_ANN_SALARY := V_SALARY * 12;
| F V_ANN SALARY >= 20000 THEN
V_BONUS : = 2000;
ELSIF V_ANN SALARY <= 19999 AND V_ANN SALARY >=10000 THEN
V_BONUS : = 1000;

ELSE
V_BONUS : = 500;
END | F;
DBVMS_QUTPUT. PUT_LINE (' The Bonus is $ ' || TO_CHAR(V_BONUS));
END;

/
SET SERVEROQUTPUT OFF

9. Writea PL/SQL block to store an employee number, the new department number and the percentage
increasein the salary in iSQL* Plus substitution variables. Update the department ID of the employee
with the new department number, and update the salary with the new salary. Use the EMP table for the

updates. Once the update is compl ete, display the message, ‘Update complete’ in the window. If no

matching records are found, display the message, ‘No Data Found'. Test the PL/SQL for the following
test cases:

SET SERVEROUTPUT ON
DEFI NE P_EMPNO = 100
DEFI NE P_NEW DEPTNO = 10
DEFI NE P_PER | NCREASE = 2
DECLARE
V_EMPNO enp. EMPLOYEE | DYIYPE : = &P_EMPNO
V_NEW DEPTNO enp. DEPARTMVENT | DY@ YPE : = & P_NEW DEPTNG,
V_PER | NCREASE NUMBER(7, 2) := & P_PER | NCREASE;
BEG N
UPDATE enp
SET departnent _id = V_NEW DEPTNQ,

salary = salary + (salary *
V_PER | NCREASE/ 100)

VWHERE enpl oyee_id = V_EMPNO
| F SQLYROANCOUNT = 0 THEN
DBMS_QOUTPUT. PUT_LINE (' No Data Found’);
ELSE
DBVS_QUTPUT. PUT_LI NE (’ Update Conplete’);
END | F;
END;
/

SET SERVEROQUTPUT OFF
Introduction to Oracle9i: PL/SQL - Additional Practice Solutions -9

Part A: Additional Practice 10 Solutions

10. CreateaPL/SQL block to declare a cursor EMP_CUR to select the employee name, salary, and hire
date from the EMPLOYEES table. Process each row from the cursor, and if the salary is greater than
15,000 and the hire date is greater than 01-FEB-1988, display the employee name, salary, and hire
date in the window.

SET SERVEROQUTPUT ON
DECLARE
CURSOR EMP_CUR I S
SELECT | ast_nane, sal ary, hire_date FROM EMPLOYEES;
V_ENAME VARCHAR2(25) ;
V_SAL NUMBER(7, 2) ;
V_Hl REDATE DATE;
BEG N
OPEN EMP_CUR,;
FETCH EMP_CUR | NTO V_ENAME, V_SAL, V_HI REDATE;
VWH LE EMP_CUR%-OUND
LOOP

I F V_SAL > 15000 AND V_HI REDATE >= TO DATE(’ 01- FEB-1988’ ,’ DD- MO\
YYYY') THEN

DBVS_OUTPUT. PUT_LINE (V_ENAME || ' earns ' || TOCHAR(V_SAL)||
and joi ned the organi zation on ' || TO _DATE(V_H REDATE, ' DD- Mon- YYYY'));
END | F;
FETCH EMP_CUR | NTO V_ENAME, V_SAL, V_HI REDATE;
END LOOP;
CLCSE EMP_CUR;
END;

/
SET SERVEROUTPUT OFF

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 10

Part A: Additional Practice 11 Solutions

11. Create a PL/SQL block to retrieve the last name and department 1D of each employee from the
EMPLOYEES table for those employees whose EMPLOYEE | D islessthan 114. From the values
retrieved from the EMPLOYEES tabl e, populate two PL/SQL tables, one to store the records of the
employee last names and the other to store the records of their department 1Ds. Using aloop, retrieve
the employee name information and the salary information from the PL/SQL tables and display it in
the window, using DBMS_OUTPUT. PUT_LI NE. Display these details for the first 15 employeesin
the PL/SQL tables.

SET SERVEROUTPUT ON
DECLARE
TYPE Tabl e_Enane is table of enployees.|ast_ name% YPE
| NDEX BY BI NARY_| NTECER;
TYPE Tabl e_dept is table of enployees. departnent _i d%YPE
| NDEX BY BI NARY_| NTECER;
V_Tenane Tabl e_Enane;
V_Tdept Tabl e _dept;
i BI NARY_I NTEGER : =0;
CURSOR C Nanedept |'S SELECT | ast_nane, departnent _id from enpl oyees
WHERE enpl oyee id < 115;
V_COUNT NUMBER : = 15;

BEG N
FOR emprec in C_Nanedept
LOOP
=0 +1;
V_Tenane(i) := enprec.|ast_nane;
V_Tdept (i) := enprec.departnment _id;
END LOOP;
FOR i IN 1..v_count
LOOP
DBMS_QUTPUT. PUT_LI NE (' Enpl oyee Nane: ' || V_Tenane(i) ||
" Department_id: ' || V_Tdept(i));
END LOOP;
END;

/
SET SERVEROUTPUT OFF

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 11

Part A: Additional Practice 12 Solutions

12. Create aPL/SQL block that declares a cursor called DATE CUR. Pass a parameter of DATE data type

to the cursor and print the details of all employees who have joined after that date. Test the PL/SQL
block for the following hire dates: 08- MAR- 00, 25- JUN- 97, 28- SEP- 98, 07- FEB- 99.

SET SERVEROUTPUT ON
DEFI NE P_HI REDATE = 08- MAR- 00
DECLARE
CURSCR DATE_CURSOR(JO N_DATE DATE) IS
SELECT enpl oyee_i d, | ast _nane, hi re_dat e FROM enpl oyees
VWHERE HI RE_DATE >JO N_DATE ;
V_EMPNO enpl oyees. enpl oyee_i d%I YPE;
V_ENAME enpl oyees. | ast _nanme% YPE;
V_HI REDATE enpl oyees. hire_dat e YPE;
V_DATE enpl oyees. hire_dat e%dYPE : = " &P _HI REDATE' ;
BEG N
OPEN DATE_CURSOR(V_DATE) ;
LOCP
FETCH DATE_CURSOR | NTO V_EMPNO, V_ENAME, V_HI REDATE;
EXIT WHEN DATE_CURSORYINOT FOUND;
DBMS_QUTPUT. PUT_LINE (V_.EMPNO || " " || V_ENAME || " ' ||
V_HI REDATE) ;
END LOOP;
END;
/
SET SERVEROQUTPUT OFF;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 12

Part A: Additional Practice 13 Solutions

13. Create aPL/SQL block to promote clerks who earn more than 3,000 to SR. CLERK and increase their
sdary by 10%. Usethe EMP table for this practice. Verify the results by querying on the EMP table.

Hint: Use a cursor with FOR UPDATE and CURRENT OF syntax.

DECLARE
CURSOR C Senior_Cerk IS
SELECT enpl oyee id,job_id FROM enp
VWHERE job_id = ' ST_CLERK AND salary > 3000
FOR UPDATE OF job_id;
BEG N
FOR V_Enrec IN C_Senior_Clerk
LOOP
UPDATE enp
SET job_id = ' ST_CLERK,
salary = 1.1 * salary
WHERE CURRENT OF C Senior_d erk;
END LOOP;
COW T;
END;
/
SELECT * FROM enp;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 13

Part A: Additional Practice 14 Solutions

14. a. For the exercise below, you will require atable to store the results. Y ou can create the ANALYSI S
table yoursdlf or runthel abAp_14a. sql script that creates the table for you. Create atable
called ANALYSI S with the following three columns:

Column Name ENAME YEARS SAL
Key Type
Nulls’Unique
FK Table

FK Column
Datatype VARCHAR2 Nunber Nunber
Length 20 2 8,2

CREATE TABLE anal ysi s
(enane Varchar 2(20),
years Nunber(2),
sal Nunber (8, 2));

b. Create a PL/SQL block to populate the ANALYSI S table with the information from the EMPLOYEES
table. Use an iSQL*Plus substitution variable to store an employee’s last name. QudeheOYEES
table to find if the number of years that the employee has been with the organization is greater than five,
and if the salary is less than 3,500, raise an exception. Handle the exception with an appropriate
exception handler that inserts the following values intoA&l_YSI S table: employee last name,
number of years of service, and the current salary. Otherwise didglaydue for a rai sein
the window. Verify the results by querying tABALYSI S table. Use the following test cases to test the
PL/SQL block:

SET SERVEROUTPUT ON
DEFI NE P_ENAME = Austin
DECLARE
DUE_FOR RAI SE EXCEPTI ON;
V_H REDATE EMPLOYEES. H RE_DATEY%YPE;
V_ENAMVE EMPLOYEES. LAST NAMVEYGYPE := | N TCAP(' & P_ENAME);
V_SAL EMPLOYEES. SALARY%IYPE;
V_YEARS NUVBER(2) ;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 14

Part A: Additional Practice 14 Solutions (continued)

BEG N
SELECT LAST_NAME, SALARY, H RE_DATE
I NTO V_ENAME, V_SAL, V_HI REDATE
FROM enpl oyees WHERE | ast _nane = V_ENAM;
V_YEARS : = MONTHS_BETWEEN(SYSDATE, V_HI REDATE) / 12;
IF V_SAL < 3500 AND V_YEARS > 5 THEN
RAI SE DUE_FOR_RAI SE;
ELSE
DBVMS_OUTPUT. PUT_LINE (* Not due for a raise’);
END | F;
EXCEPTI ON
VWHEN DUE_FOR_RAI SE THEN
| NSERT | NTO ANALYSI S(ENAMVE, YEARS, SAL)
VALUES (V_ENAME, V_YEARS, V_SAL) ;
END;
/

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 15

Part A: Additional Practice 15 Solutions
15. Inthispractice, create a program to add a new job into the JOBS table.
a. Create astored procedure called ADD _JOBS to enter a new order into the JOBS table.

The procedure should accept three parameters. The first and second parameters supplies ajob
ID and ajob title. The third parameter supplies the minimum salary. Use the maximum salary
for the new job as twice the minimum salary supplied for the job ID.
CREATE OR REPLACE PROCEDURE add_j obs
(p_jobid I N j obs.job_i d%'YPE,
p_jobtitle INjobs.job_title%lYPE,
p_mnsal |IN jobs.mn_sal ary% YPE
)
IS
v_maxsal jobs. max_sal ar y%d YPE;
BEG N
v_maxsal := 2 * p_mnsal;
| NSERT | NTO j obs
(job_id, job title, mn_salary, max_sal ary)
VALUES
(p_jobid, p_jobtitle, p_ninsal, v_nmaxsal);
DBVS _QOUTPUT. PUT_LINE (' Added the foll owi ng row

into the JOBS table ...");
DBVMS_QUTPUT. PUT_LINE (p_jobid || * " || p_jobtitle ||
|| p_mmnsal || * " || v_naxsal);

END add_j obs;
/

b. Disablethetrigger SECURE_DM. before invoking the procedure. Invoke the procedure to add a
new job with job ID SY_ANAL, jobtitle Syst em Anal yst , and minimum salary of 6,000.

ALTER TRI GGER secur e_enpl oyees DI SABLE;
EXECUTE add_j obs (' SY_ANAL', ’'System Analyst’, 6000)

c. Veify that arow was added and remember the new job ID for usein the next exercise.

Commit the changes.

SELECT *

FROM | obs

WHERE job_id = ' SY_ANAL’;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 16

Part A: Additional Practice 16 Solutions

16. Inthispractice, create a program to add a new row to the JOB_HI STORY table, for an existing
employee.
Note: Disable al triggers on the EMPLOYEES, JOBS, and JOB_HI STCRY tables before
invoking the procedure in part b. Enable al these triggers after executing the procedure.

a Create astored procedure called ADD_JOB_HI ST to enter a new row into the JOB_HI STORY
table for an employee who is changing his jab to the new job ID that you created in question
15b.

Use the employee ID of the employee who is changing the job and the new job ID for the
employee as parameters. Obtain the row corresponding to this employee ID from the
EMPLOYEES table and insert itintothe JOB_HI STORY table. Make hire date of this
employee as start date and today’s date as end date for thisrow inthe JOB_HI STORY table.
Change the hire date of this employee in the EMPLOYEES table to today’s date. Update the job
ID of this employeeto the job ID passed as parameter (Use the job ID of the job created in
question 15b) and salary equa to minimum salary for that job 1D + 500.

Include exception handling to handle an attempt to insert a nonexistent employee.

CREATE OR REPLACE PROCEDURE add_j ob_hi st

(p_enpid I N enpl oyees. enpl oyee_i d%l'YPE,
p_jobid IN jobs.job id¥%YPE)

IS

BEG N
I NSERT | NTO job_history

SELECT enpl oyee_id, hire_date, SYSDATE, job_id, departnent_id
FROM enpl oyees
WHERE enpl oyee_id = p_enpi d;
UPDATE enpl oyees
SET hire_date = SYSDATE,
job_id = p_jobid,
salary = (SELECT mi n_sal ary+500
FROM | obs
WHERE job_id = p_jobid)
WHERE enpl oyee id = p_enpid,;

DBVS_OUTPUT. PUT_LI NE (' Added enpl oyee ' || p_enpid] |
" details to the JOB H STORY table’);

DBVS_OUTPUT. PUT_LINE (' Updated current job of enployee’
| p_enpid|[| * to "|| p_jobid);
EXCEPTI ON
VHEN NO DATA FOUND THEN
RAI SE_APPLI CATI ON_ERRCR (-20001, ' Enpl oyee does not exist!’);
END add _j ob_hi st;
/

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 17

Part A: Additional Practice 16 Solutions (continued)

b. Disabletriggers. (Seethe note at the beginning of this question.)
Execute the procedure with employee ID 106 and job ID SY_ANAL as parameters.
Enable the triggers that you disabled.
ALTER TABLE enpl oyees DI SABLE ALL TRI GGERS;
ALTER TABLE jobs DI SABLE ALL TRI GGERS;
ALTER TABLE job_history DI SABLE ALL TRI GCGERS;

EXECUTE add_j ob_hi st (106, ' SY_ANAL’)

ALTER TABLE enpl oyees ENABLE ALL TRI GGERS;
ALTER TABLE j obs ENABLE ALL TRI GCERS;
ALTER TABLE j ob_hi story ENABLE ALL TRI GGERS;

¢. Query thetablesto view your changes, and then commit the changes.

SELECT * FROM job_history
WHERE enpl oyee id = 106;

SELECT job_id, salary FROM enpl oyees
WHERE enpl oyee id = 106;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 18

Part A: Additional Practice 17 Solutions

17. Inthispractice, create a program to update the minimum and maximum salaries for ajob in the
JOBS table.

a. Create astored procedure called UPD_SAL to update the minimum and maximum salaries for a
specific job ID inthe JOBS table.
Pass three parameters to the procedure: the job 1D, a new minimum salary, and a new maximum
sdary for the job. Add exception handling to account for an invalid job ID in the JOBS table.
Also, raise an exception if the maximum salary supplied islessthan the minimum salary. Provide
an appropriate message that will be displayed if the row in the JOBS table is locked and cannot
be changed.

CREATE OR REPLACE PROCEDURE upd_sal

(p_jobid I N jobs.job_id% ype,

p_mnsal |INjobs.mn_sal ary% ype,

p_nmaxsal I N jobs.max_sal ary% ype)
IS

v_dumry VARCHAR2(1) ;

e _resource_busy EXCEPTI ON,

sal _error EXCEPTI ON;

PRAGVA EXCEPTION INIT (e_resource_busy , -54);
BEG N

I F (p_nmaxsal < p_minsal) THEN
DBMS_QOUTPUT. PUT_LI NE(’ ERROR. MAX SAL SHOULD BE > M N SAL’);
RAI SE sal error;

END | F;

SELECT '’
I NTO v_dunmy
FROM j obs

WHERE job_id = p_j obid
FOR UPDATE OF nin_sal ary NOMI T;

UPDATE j obs
SET mn_salary = p_mnsal,
max_sal ary = p_naxsal
WHERE job_id = p_jobid;
EXCEPTI ON

WHEN e resource_busy THEN
RAI SE_APPLI CATI ON_ERROR (-20001, 'Job information is
currently locked, try later.’);
VWHEN NO _DATA FOUND THEN
RAI SE_APPLI CATI ON_ERROR
(-20001, 'This job ID does not exist’);
WHEN sal error THEN

RAI SE_APPLI| CATI ON_ERROR(- 20001, Data error..Max sal ary
shoul d be nore than mn salary’);

END upd_sal ;
/

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 19

Part A: Additional Practice 17 and 18 Solutions
b. Execute the procedure. Y ou can use the following data to test your procedure:

18.

EXECUTE upd_sal (' SY_ANAL’', 7000, 140)
EXECUTE upd_sal (' SY_ANAL’', 7000, 14000)

Query the JOBS table to view your changes, and then commit the changes.
SELECT *

FROM j obs

VWHERE job_id = ' SY_ANAL’;

In this practice, create a procedure to monitor whether employees have exceeded their average
sdary limits.
Add a column to the EMPLOYEES table by executing the following command:
(I abaddA 4. sql)
ALTER TABLE enpl oyees
ADD (sal _limt _indicate VARCHAR2(3) DEFAULT ' NO
CONSTRAI NT enp_sal limt_ck CHECK
(sal _limt _indicate IN ('"YES, "NO)));

b. Write astored procedure called CHECK AVG_SAL which checks each employee’s average

saary limit from the J OBS table against the salary that this employee hasin the EMPLOYEES
table and updatesthe SAL_LI1 M T_I NDI CATE column in the EMPLOYEES table when this
employee has exceeded his average salary limit.

Create a cursor to hold employee Ids, salaries, and their average salary limit. Find the average
saary limit possible for an employee'sjob from the J OBS table. Compare the average salary

limit possible per employee to their salary and if the salary is more than the average salary limit,
set the employeeSAL_LI M T_I NDI CATE column toYES; otherwise, set it tdlO. Add

exception handling to account for a record being locked.

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 20

Part A: Additional Practice 18 Solutions (continued)
CREATE OR REPLACE PROCEDURE check_avg_ sal
IS
v_avg_sal NUMBER;
CURSOR enp_sal _cur 1S
SELECT enployee_id, job_id, salary
FROM enpl oyees

FOR UPDATE;
e_resource_busy EXCEPTI ON;
PRAGVA EXCEPTI ON_I NI T(e_resource_busy, -54);
BEG N

FORr_emp IN enp_sal _cur LOOP
SELECT (max_salary + mn_salary)/2
| NTO v_avg_sal
FROM j obs
WHERE jobs.job id = r_enp.job_id;
IF r_enp.salary >= v_avg_sal THEN
UPDATE enpl oyees
SET sal linmt_indicate = ' YES
WHERE CURRENT OF enp_sal _cur;
ELSE
UPDATE enpl oyees
SET sal _limt_indicate = ' NO
WHERE enpl oyee_id = r_enp. enpl oyee_i d;
END | F;
END LOOP;
EXCEPTI ON
WHEN e resource_busy THEN
ROLLBACK;

RAI SE_APPLI CATI ON_ERROR (-20001,
"Record is busy, try later.’);

END check_avg_sal ;
/

c. [Executethe procedure, and then test the results.
EXECUTE check_avg_sal
Query the EMPLOYEES table to view your modifications, and then commit the changes.

SELECT e.job_id, j.mn_salary, e.salary, j.max_salary
FROM enpl oyees e, jobs j
WHERE e.job_id =j.job_id

AND enpl oyee_ id = 106;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 21

Part A: Additional Practice 19 Solutions
19. Create aprogram to retrieve the number of years of service for a specific employee.
a Create astored function called GET_SERVI CE_YRS to retrieve the total number of years of
service for a specific employee.
The function should accept the employee ID as a parameter and return the number of years of
service. Add error handling to account for an invalid employee ID.
CREATE OR REPLACE FUNCTI ON get _service_yrs
(p_enpid IN enployees. enpl oyee_i d%'YPE)
RETURN nunber
IS
CURSOR enmp_yrs_cur 1S
SELECT (end_date - start_date)/ 365 service
FROM job_history
WHERE enpl oyee_id = p_enpid;
v_srvcyrs NUMBER(2) := O;
v_yrs NUMBER(2) := O;
BEG N
FOR r_yrs IN enp_yrs _cur LOOP
EXIT WHEN enp_yrs_cur ¥NOTFOUND;

V_Srvcyrs := V_Srvcyrs + r_yrs.service;
END LOOP;
SELECT (SYSDATE - hire_date)

INTO v_yrs

FROM enpl oyees
WHERE enpl oyee_id = p_enpid;

V_SIVCyrs := V_Srvcyrs + v_yrs;
RETURN v_srvcyrs;
EXCEPTI ON

WHEN NO_DATA FOUND THEN

RAI SE_APPL| CATI ON_ERROR(-20348, 'There is no enployee with
the specified ID);

END get service_yrs;
/
b. Invoke the function. Y ou can use the following data:
EXECUTE DBMs OUTPUT. PUT_LI NE(get _service_yrs(999))

BEGIN DEMS_OUTPUT PUT_LINE(get_service_yrs(9955); END;
*

ERROE at line 1:

OF.A-20348: Thete iz no employee with the specified ID
OR&-06512: at "SHP GET_SERVICE_YE3", line 24
OR&-08512: at line 1

EXECUTE DBMS OUTPUT. PUT_LINE (' Approximately " ||
get _service_yrs(106) || ' years’)

Approvmately . 3 years
FLAZOL procedure successfially completed.

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 22

Part A: Additional Practice 19 Solutions (continued)

C.

Query the JOB_HI STORY and EMPLOYEES tables for the specified employee to verify that the

modifications are accurate.

SELECT enpl oyee id, job id, (end date-start _date)/365 duration

FROM job_history;

| EMPLOYEEID | JOB_ID | DURATION

| 102 |IT_PROG | 552876712
| 101 |AC_ACCOUNT | 410136986
| 101 |AC_MGR | 338082192
| 201 |MK_REF | 383835616
| 114 |ST_CLERK | 177260274
| 122 |ST_GLERK | 987260274
| 200 |AD_ASST | 575342466
| 176 |SA_REP | FTI60274
| 176 |SA_MAN | 987260274
| 200 |AC_ACCOUNT | 450410959
| 106 |IT_PROG | 324556171

11 rows selected.

SELECT job_id, (SYSDATE-hire date)/ 365 duration

FROM enpl oyees
WHERE enpl oyee id = 106;

| JOB_ID | DURATION

|SY_ANAL |

000082714

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 23

Part A: Additional Practice 20 Solutions

20. Inthispractice, create aprogram to retrieve the number of different jobs that an employee
worked during his or her service.

a Create astored function called GET_JOB_COUNT to retrieve the total number of different jobs
on which employee worked.

The function should accept one parameter to hold the employee ID. The function will return the
number of different jobs that employee worked until now. This also includes the present job.
Add exception handling to account for an invalid employee ID.

Hint: Verify distinct job IDsfrom the Job__hi st or y table. Verify whether the current job ID
is one of the job IDs on which the employee worked.
CREATE OR REPLACE FUNCTI ON get job_count
(p_empid IN enployees. enpl oyee_i d%'YPE)
RETURN NUMBER
IS
v_currjob enpl oyees. j ob_i dWYPE;
v_nunj obs NUMBER : = 0;
n NUVBER;
BEG N
SELECT COUNT(DI STI NCT j ob_id)
| NTO v_nunj obs
FROM j ob_hi story
WHERE enpl oyee id = p_enpi d;
SELECT COUNT(j ob_i d)
I NTO n
FROM enpl oyees
WHERE enpl oyee id = p_enpid
AND job_id IN (SELECT DI STINCT job_id
FROM j ob_history
WHERE enpl oyee_id = p_enpid);

IF (n = 0) THEN -- The current job is not one of the previous
j obs
v_nunj obs : = v_nunjobs + 1;
END | F;
RETURN v_nunj obs;
EXCEPTI ON

WHEN NO DATA FOUND THEN
RAI SE_APPLI CATI ON_ERROR(- 20348, ' This enpl oyee does not
exist!’);
END get j ob_count;
/

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 24

Part A: Additional Practice 20 and 21 Solutions
b. Invoke the function. Y ou can use the following data:

EXECUTE DBMS_QUTPUT. PUT_LI NE(’ Enpl oyee worked on ’ ||
get _job _count(176) || ' different jobs.’)

Employee wotked on 2 different jobs.
PLAZOL procedure successfolly completed.

21. Create a package specification and body called EMP_JOB_PKGthat contains your ADD_JOBS,
ADD JOB HI ST, and UPD_SAL procedures aswell asyour GET_SERVI CE_ YRS function.

a. Make al the constructs public. Consider whether you still need the stand-alone procedures and
functions you just packaged.
CREATE OR REPLACE PACKAGE enp_j ob_pkg
IS
PROCEDURE add_j obs
(p_jobid I N jobs.job_ i d%l'YPE,
p_jobtitle INjobs.job title%lYPE,
p_mnsal [IN jobs.m n_sal ary%YPE
);
PROCEDURE add_j ob_hi st
(p_enpid I N enpl oyees. enpl oyee_i d%I'YPE,
p_jobid I N jobs.job_i dW'YPE);
PROCEDURE upd_sal
(p_jobid IN jobs.job_id% ype,
p_mnsal |INjobs.nn_salary% ype,
p_maxsal | N jobs.max_sal ary% ype) ;
FUNCTI ON get _service_yrs
(p_enmpid IN enployees. enpl oyee_i d%'YPE)
RETURN NUMBER;
END enp_j ob_pkg;
/

CREATE OR REPLACE PACKAGE BODY enp_j ob_pkg
IS
PROCEDURE add_j obs

(p_jobid IN jobs.job_i d%WYPE,
p_jobtitle INjobs.job title%lYPE,
p_mnsal |INjobs.mn_sal ary% YPE

)

IS

v_maxsal jobs.nmax_sal ar y%l YPE;
BEG N

v_maxsal := 2 * p_mnsal;

I NSERT INTO jobs (job_ id, job title, min_salary, nmax_sal ary)

VALUES (p_jobid, p_jobtitle, p_mnsal, v_maxsal);

DBVS_QUTPUT. PUT_LINE (" Added the following row into the JOBS
table ...");

DBVMS_QUTPUT. PUT_LINE (p_jobid||" ’'||p_jobtitle|]’
"||p_mnsal||’ '|]|v_maxsal);

END add _j obs;
Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 25

Part A: Additional Practice 21 Solutions (continued)
PROCEDURE add_j ob_hi st
(p_enpid I N enpl oyees. enpl oyee_i d%I'YPE,
p_jobid IN jobs.job_id%WYPE) IS
BEG N
I NSERT | NTO j ob_history
SELECT enpl oyee id, hire_date, SYSDATE, job _id, departnent _id
FROM enpl oyees WHERE enpl oyee id = p_enpid;
UPDATE enpl oyees
SET hire_date = SYSDATE, job_id = p_jobid,
salary = (SELECT mi n_sal ary+500 FROM j obs
VWHERE job_id = p_jobid)
WHERE enmpl oyee_id = p_enpid;
DBVMS_QUTPUT. PUT_LI NE (’ Added enpl oyee * || p_enmpid|| ’ details
to the JOB HI STORY table');
DBMS_OUTPUT. PUT_LI NE(’ Updated current job of enployee ' ||
p_enpid [| ' to ' || p_jobid);
EXCEPTI ON
WHEN NO DATA FOUND THEN
RAI SE_APPLI CATI ON_ERRCOR (-20001, ' Enpl oyee does not exist!’);
END add_j ob_hi st;
PROCEDURE upd_sal
(p_jobid IN jobs.job_id% ype,

p_mnsal |IN jobs.n n_sal ary% ype,

p_maxsal | N jobs. max_sal ary% ype) IS

v_dumry VARCHAR2(1) ;

e_resource_busy EXCEPTI ON,

sal _error EXCEPTI ON;

PRAGVA EXCEPTION_INIT (e_resource_busy , -54);
BEG N

I F (p_naxsal < p_mnsal) THEN
DBMS_QOUTPUT. PUT_LI NE(® ERROR. . MAX SAL SHOULD BE > M N SAL’);
RAlI SE sal error;

END | F;

SELECT "’ INTO v_dunmy FROM jobs WHERE job_id = p_jobid
FOR UPDATE OF m n_sal ary NOMI T;

UPDATE j obs

SET mn_salary = p_mnsal, max_salary = p_naxsal
WHERE job id = p_jobid;
EXCEPTI ON

WHEN e resource_busy THEN

RAI SE_APPLI CATI ON_ERRCR (-20001, 'Job information is currently
| ocked, try later.’);

VHEN NO _DATA FOUND THEN

RAI SE_APPLI CATI ON_ERROR (-20001, 'This job ID doesn’t exist’);

VWHEN sal _error THEN

RAI SE_APPLI CATI ON_ERRCOR(-20001, ' Data error..Max sal ary
shoul d be nore than mn salary’);
END upd_sal ;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 26

Part A: Additional Practice 21 Solutions (continued)
FUNCTI ON get _service_yrs
(p_enmpid IN enployees. enpl oyee_i d%'YPE)
RETURN nunber
IS
CURSOR enp_yrs_cur 1S
SELECT (end_date - start _date)/ 365 service
FROM job_history
WHERE enpl oyee_id = p_enpid;
v_srvcyrs NUMBER(2) := O;
v_yrs NUMBER(2) := O;
BEG N
FOR r_yrs IN enp_yrs_cur LOOP
EXIT WHEN enp_yrs_cur ¥NOTFOUND;

V_SIVCyrs := V_Srvcyrs + r_yrs.service;
END LOOP;
SELECT (SYSDATE - hire_date)

INTO v_yrs

FROM enpl oyees
WHERE enpl oyee_id = p_enpid;

V_SIVCYyrs := V_Srvcyrs + v_yrs;
RETURN v_srvcyrs;
EXCEPTI ON

WHEN NO DATA FOUND THEN
RAI SE_APPLI| CATI ON_ERROR(- 20348, 'There is no enployee with
the specified ID);
END get _service_yrs;

END enp_j ob_pkg;
/

b. Disable al thetriggers before invoking the procedure and enabl e them after invoking the
procedure, as suggested in question 16b.

Invoke your ADD_JOBS procedureto create a new job with ID PR_MAN, job title Publ i ¢
Rel ati ons Manager, and salary of 6,250.

Invoke your ADD_JOB_HI ST procedure to modify the job of employee with employee ID 110
tojob ID PR_MAN.

Hint: All of the above calsto the functions should be successful.
EXECUTE enp_j ob_pkg. add jobs (' PR MAN , 'Public Relations
Manager’, 6250)
EXECUTE enp_j ob_pkg. add_j ob_hi st (110, ' PR _MAN)
c. QuerytheJOBS, JOB_H STORY, and EMPLOYEES tablesto verify the results.
SELECT * FROM jobs WHERE job_id = ' PR_MAN ;
SELECT * FROM j ob_hi story WHERE enpl oyee_id = 110;
SELECT job_id, salary FROM enpl oyees WHERE enpl oyee id = 110;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 27

Part A: Additional Practice 22 Solutions

22.

a

Note:

In this practice, use an Oracle-supplied package to schedule your GET_JOB_COUNT
function to run semiannually.

Create an anonymous block to call the DBMS_J OB Oracle-supplied package.

Invoke the package function DBMS_JOB. SUBM T and pass the following four parameters: a
variable to hold the job number, the name of the subprogram you want to submit, SYSDATE as
the date when the job will run, and an interval of ADDMONTHS(SYSDATE + 6) for
semiannual submission.

DECLARE
v_job USER JOBS. | ob%YPE;
BEG N

DBMS JOB. SUBM T (v_job, ' BEG N DBVMS_OUTPUT. PUT_LI NE
(get _job _count(110)); END; ',

SYSDATE,
" ADD_MONTHS(SYSDATE, 6)’');
DBVS_JOB. RUN(V_j ob);
DBVMS_OUTPUT. PUT_LINE(’JOB: "|| v_job ||
" COWPLETED AT - ' || SYSDATE);
END;
/
To forcethejob to run immediately, call DBMS_JOB. RUN(your _j ob_nunber) after
calling DBMS_JOB. SUBM T, . This executes the job waiting in the queue.
Execute the anonymous block.

Check your results by querying the EMPLOYEES and JOB_HI STORY tables and querying the
USER_JOBS dictionary view to see the status of your job submission.

SELECT j ob, what, schema_user, |ast_date, next_date, interval
FROM USER_JOBS;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 28

Part A: Additional Practice 23 Solutions

23.

In this practice, create atrigger to ensure that the job ID of any new employee being hired to
department 80 (the Sales department) is a sales manager or representative.

Disable al the previously created triggers as discussed in question 16b.
ALTER TABLE enpl oyees DI SABLE ALL TRI GGERS;
ALTER TABLE j obs DI SABLE ALL TRI GGERS;

ALTER TABLE j ob_hi story DI SABLE ALL TRI GCGERS;
Create atrigger called CHK_SALES JOB.

Fire the trigger before every row that is changed after insertions and updatesto the JOB_| D
column in the EMPLOYEES table. Check that the new employee hasajob ID of SA MAN or

SA REP in the EMPLOYEES table. Add exception handling and provide an appropriate message
so that the update failsif the new job ID is not that of a sales manager or representative.
CREATE OR REPLACE TRI GGER chk_sal es_j ob

BEFORE | NSERT OR UPDATE OF job_id ON enpl oyees

FOR EACH ROW

DECLARE
e_invalid_sales_job EXCEPTI ON;
BEG N
| F :new. departnent_id = 80 THEN
IF (:new.job_id NOT IN ("SA MAN , 'SA REP')) THEN
RAI SE e _invalid sal es_job;
END | F;
END | F;
EXCEPTI ON

WHEN e_invalid_sal es_job THEN

RAI SE_APPLI CATI ON_ERRCR (-20444, ’'This enployee in departnment
80 should be a Sal es Manager or Sales Rep!’);

END chk_sal es_j ob;
/

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 29

Part A: Additional Practice 23 Solutions (continued)

c. Testthetrigger. You can use the following data:
UPDATE enpl oyees
SET job_id = ' AD VP
WHERE enpl oyee id = 106;
UPDATE enpl oyees
SET job_id = ' AD VP
WHERE enpl oyee_id = 179;
UPDATE enpl oyees
SET job_id = ' SA MAN
WHERE enpl oyee_id = 179;
Hint: The middle statement should produce the error message specified in your trigger.

1 rowr updated.
UPDATE eruployees
*

ERECF. at line 1:

OFL-20444: This eraplotee in departinent 80 should be & Sales Manager or Sales Fepl
ORA-06512: at "SHR.CHE_SALES JOB®, line 11

OF £ -0402%: error during execution of trigger SHO.CHE _SATES JOR!

1 roowr updated.

d. Query the EMPLOYEES table to view the changes. Commit the changes.
SELECT job_id, departnent_id, salary
FROM enpl oyees
WHERE enpl oyee id = 179;

e. Enableall thetriggers previousdly that you disabled, as discussed in question 16b.
ALTER TABLE enpl oyees ENABLE ALL TRI GGERS;
ALTER TABLE j obs ENABLE ALL TRI GGERS;
ALTER TABLE job_history ENABLE ALL TRI GGERS;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 30

Part A: Additional Practice 24 Solutions

24. Inthispractice, create atrigger to ensure that the minimum and maximum salaries of ajob are
never modified such that the salary of an existing employee with that job ID is out of the new
range specified for the job.

a. Createatrigger called CHECK SAL_RANGE.
Fire the trigger before every row that is changed when datais updated inthe M N_SALARY and
MAX_SALARY columnsin the JOBS table. For any minimum or maximum salary valuethat is
changed, check that the salary of any existing employee with that job ID in the EMPLOYEES

table falls within the new range of salaries specified for thisjob ID. Include exception handling
to cover a salary range change that affects the record of any existing employee.

CREATE OR REPLACE TRI GGER check_sal range
BEFORE UPDATE OF min_sal ary, max_sal ary ON j obs
FOR EACH ROW
DECLARE
v_m nsal enpl oyees. sal ar y%d' YPE;
v_maxsal enpl oyees. sal ar y%I'YPE;
e_invalid_salrange EXCEPTI ON;
BEG N
SELECT M N(sal ary), MAX(sal ary)
I NTO v_minsal, v_maxsal
FROM enpl oyees
WHERE job_id = : NEWjob_id;
IF (v_mnsal < :NEWmMn_salary)OR(v_naxsal > :NEW nax_sal ary)
THEN RAI SE e_invali d_sal range;
END I F;
EXCEPTI ON
WHEN e_i nval i d_sal range THEN

RAI SE_APPLI CATI ON_ERROR(- 20550, ' There are enpl oyees whose
salary is out of the specified range. Can not update with
the specified salary range.’);

END check_sal _range;

/

b. Test thetrigger. You can use the following data:
SELECT * FROM jobs WHERE job_id = ' SY_ANAL’;
SELECT enpl oyee_id, job_id, salary
FROM enpl oyees
VWHERE job_id = ' SY_ANAL’;
UPDATE | obs

SET min_salary = 5000, max_salary = 7000
VWHERE job_id = ' SY_ANAL’;

UPDATE j obs
SET min_salary = 7000, max_salary = 18000
VWHERE job_id = ' SY_ANAL’;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 31

Part B: Additional Practice 1 Solutions
1 Run the script bui | dvi d1. sqgl to create all of the required tables and sequences needed for
this exercise.

Run the script bui | dvi d2. sqgl to populate al the tables created through by the script
bui | dvi d1. sql

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 32

Part B: Additional Practice 2 Solutions

2.

a

Cresate a package named VI DEOwith the following procedures and functions:

NEW MEMBER: A public procedure that adds a new member to the MEMBER table. For the
member ID number, use the sequence MEMBER | D_SEQ for the join date, use SYSDATE. Pass
all other valuesto be inserted into a new row as parameters.

NEW RENTAL: An overloaded public function to record a new rental. Pass thetitle ID number

for the video that a customer wants to rent and either the customer’s last name or his member ID
number into the function. The function should return the due date for the video. Due dates are
three days from the date the video is rented. If the status for a movie requested is listed as
AVAI LABLE in theTl TLE_COPY table for one copy of this title, then update this

Tl TLE_COPY table and set the statusRENTED. If there is no copy available, the function

must returrNULL. Then, insert a new record into tRENTAL table identifying the booked date

as today's date, the copy ID number, the member ID number, the title ID number and the
expected return date. Be aware of multiple customers with the same last name. In this case, have
the function returmMNULL, and display a list of the customers' names that match and their ID
numbers.

RETURN_MOVI E: A public procedure that updates the status of a video (available, rented, or
damaged) and sets the return date. Pass the title ID, the copy ID and the status to this procedure.
Check whether there are reservations for that title, and display a message if it is reserved. Update
the RENTAL table and set the actual return date to today’s date. Update the status in the

Tl TLE_COPY table based on the status parameter passed into the procedure.

RESERVE_MOVI E: A private procedure that executes only if all of the video copies requested in
the NEW_RENTAL procedure have a statusRENTED. Pass the member ID number and the title

ID number to this procedure. Insert a new record int&REBERVATI ON table and record the
reservation date, member ID number, and title ID number. Print out a message indicating that a
movie is reserved and its expected date of return.

EXCEPTI ON_HANDLER: A private procedure that is called from the exception handler of the
public programs. Pass t&€). CODE number to this procedure, and the name of the program (as
a text string) where the error occurred. B¢ SE_APPLI CATI ON_ERRORto raise a

customized error. Start with a unique key violation (-1) and foreign key violation

(-2292). Allow the exception handler to raise a generic error for any other errors.

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 33

Part B: Additional Practice 2 Solutions

CREATE OR REPLACE PACKAGE vi deo

IS
PROCEDURE new_nenber
(p_I name I N menber .| ast _nanme%l YPE,
p_f nanme IN menber.first_name%YPE DEFAULT NULL,
p_address I N menber . addr ess% YPE DEFAULT NULL,
p_city I N menber. ci t y%a'YPE DEFAULT NULL,
p_phone I N menber . phone% YPE DEFAULT NULL);

FUNCTI ON new _r ent al
(p_nmenber _id IN rental . menber _i d%IYPE,
p_title_id INrental.title_i dWYPE)
RETURN DATE;

FUNCTI ON new _r ent al
(p_rmenber _nanme | N nenber. | ast_nanme%l YPE,

p_title_id INrental.title_i dWYPE)
RETURN DATE;
PROCEDURE return_novi e
(p_title_id INrental .title_i d%WYPE,
p_copy_id IN rental . copy_i dWYPE,
p_status INtitle copy.status%YPE);
END vi deo;

/

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 34

Part B: Additional Practice 2 Solutions (continued)

CREATE OR REPLACE PACKAGE BODY vi deo
IS
/* PRI VATE PROGRAMS */
PROCEDURE exception_handl er
(p_code I N NUMBER,
p_cont ext IN VARCHAR2)
IS
BEG N
|F p_code = -1 THEN
RAI SE_APPLI CATI ON_ERROR(- 20001, ' The nunber is
assigned to this nenber is already in use, try again.’);
ELSIF p_code = -2291 THEN
RAI SE_APPLI CATI ON_ERRCR(-20002, p_context || ' has
attenpted to use a foreign key value that is invalid);
ELSE
RAI SE_APPLI CATI ON_ERROR(- 20999, ’'Unhandled error in ' ||
p_context || '. Please contact your application
adm nistrator with the following information: ’
|| CHR(13) || SQLERRW;
END | F;
END exception_handl er;

PROCEDURE reserve_novi e
(p_nmenber _id |IN reservation. menber i d%YPE,
p_title_id IN reservation.title_i d%WYPE)
IS
CURSCR rented_cur IS
SELECT exp_ret _date
FROM r ent al
WHERE title_id = p_title_id
AND act ret date IS NULL;
BEG N
| NSERT | NTO reservation (res_date, nmenber _id, title_id)
VALUES(SYSDATE, p_nenber _id, p_title_id);
COW T;
FOR rented_rec IN rented_cur LOOP
DBVS_OUTPUT. PUT_LI NE(’ Movi e reserved. Expected back on: '’
|| rented rec.exp_ret _date);
EXIT WHEN rent ed_cur % ound,;
END LOOP;
EXCEPTI ON
VWHEN OTHERS THEN
exception_handl er (SQLCODE, ' RESERVE MOVIE') ;
END reserve_novi e;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 35

Part B: Additional Practice 2 Solutions (continued)

/* PUBLI C PROGRAMS */

PROCEDURE r et urn_novi e

(p_title_id INrental .title_ i dWYPE,
p_copy_id IN rental . copy_i dWYPE,
p_status IN title_copy.status% YPE)

IS

v_dumry VARCHAR2(1);
CURSOR res_cur IS
SELECT *
FROM r eservati on
WHERE title id = p_title_id;
BEG N
SELECT "~
| NTO v_dunmy
FROM title
WHERE title id = p_title_ id;
UPDATE r ent al
SET act _ret _date = SYSDATE
WHERE title_id = p_title_id
AND copy_id = p_copy_id
AND act _ret _date |I'S NULL;
UPDATE title_copy
SET status = UPPER(p_st atus)
WHERE title_id = p_title_id
AND copy_id = p_copy_id;
FOR res rec IN res_cur LOOP
I F res_cur%OUND THEN
DBMS_QUTPUT. PUT_LI NE(’ Put this nmovie on hold -- ||
"reserved by nenber # || res_rec.nmenber _id);
END if;
END LOOP;
EXCEPTI ON
VWHEN OTHERS THEN
exception_handl er (SQLCODE, ' RETURN MOVIE');
END return_novi e;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 36

Part B: Additional Practice 2 Solutions (continued)

/* PUBLI C PROGRAMS */

FUNCTI ON new_r ent al
(p_nmenber _id IN rental.nmenber i d%YPE
ptitle id IN rental.title_ i dWYPE)
RETURN DATE
IS
CURSOR copy_cur 1S
SELECT *
FROM titl e _copy
WHERE title_id = p_title_id
FOR UPDATE
v_flag BOOLEAN : = FALSE
BEG N
FOR copy_rec I N copy_cur LOOP
| F copy_rec.status = " AVAI LABLE THEN
UPDATE title_copy
SET status = ' RENTED
VWHERE CURRENT OF copy_cur;
I NSERT | NTO rent al (book _date, copy_id, nmenber _id,
title_id, exp_ret_date)
VALUES(SYSDATE, copy_rec.copy_id, p_nenber _id,
p_title id, SYSDATE + 3);
v_flag := TRUE;
EXI T,
END | F;
END LOOP
COW T;
IF v_flag THEN
RETURN (SYSDATE + 3);
ELSE
reserve_novi e(p_nenber _id, p_title_id);
RETURN NULL;
END | F;
EXCEPTI ON
VWHEN OTHERS THEN
exception_handl er (SQLCODE, ' NEW RENTAL’);
END new rental ;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 37

Part B: Additional Practice 2 Solutions (continued)

/* PUBLI C PROGRAMS */
FUNCTI ON new _rent al

(p_nmenber _nane IN nmenber. | ast_name% YPE,
p_title_id IN rental.title_i d%WYPE)
RETURN DATE
IS
CURSOR copy_cur 1S
SELECT *

FROM title_copy
WHERE title_id = p_title_id
FOR UPDATE
v_flag BOOLEAN := FALSE;
p_menber _id nmenber. menber _i d%I'YPE;
CURSOR menber _cur IS
SELECT nenber id, |ast_nane, first _nane
FROM nenber
WHERE LOWER(| ast _name) = LONER(p_nenber nane)
ORDER BY | ast_nane, first_nane;
BEG N
SELECT nenber _id
| NTO p_nenber _id
FROM nenber
WHERE | ower (| ast _nane) = | ower (p_nenber _nane);
FOR copy_rec I N copy_cur LOOP
| F copy_rec.status = "AVAI LABLE THEN
UPDATE title_copy
SET status = ' RENTED
WHERE CURRENT OF copy_cur
I NSERT I NTO rental (book_date, copy_id, nenber_id,
title_ id, exp_ret _date)
VALUES (SYSDATE, copy_rec.copy_id, p_nenber _id,
p_title_id, SYSDATE + 3);
v_flag : = TRUE;
EXIT;
END | F;
END LOOP
COW T;
|F v_flag THEN
RETURN(SYSDATE + 3);
ELSE
reserve _novi e(p_nmenber _id, p_title_id);
RETURN NULL;
END | F;

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 38

Part B: Additional Practice 2 Solutions (continued)

/* NEW RENTAL CONTI NUED FROM PRI OR PAGE */
EXCEPTI ON
VWHEN TOO MANY_ROWS THEN
DBV _OUTPUT. PUT_LI NE(
"Warni ng! More than one nenber by this nane.’);
FOR nenber _rec | N nenber _cur LOCP
DBVS_QUTPUT. PUT_LI NE(menber _rec. nenber _id || CHR(9) ||
menber _rec.last_nane || ', ' || nenber _rec.first_nane);
END LOOP;
RETURN NULL;
VWHEN OTHERS THEN
exception_handl er (SQLCODE, ' NEW RENTAL’) ;
END new rental ;

PROCEDURE new_nenber

(p_I name I N menber. | ast _name% YPE,
p_f name I N menmber.first_nanme%YPE DEFAULT NULL,
p_address I N menber . addr ess% YPE DEFAULT NULL,
p_city I N menber. ci t y%I'YPE DEFAULT NULL,
p_phone I N menber . phone% YPE DEFAULT NULL)
IS
BEG N

I NSERT | NTO nenber (nmenber _id, |ast_name, first_nane,
address, city, phone, join_date)
VALUES(menber _i d_seq. NEXTVAL, p_Il nane, p_fnane,
p_address, p_city, p_phone, SYSDATE);
COW T;
EXCEPTI ON
VWHEN OTHERS THEN
exception_handl er (SQLCODE, ' NEW MEMBER) ;
END new _nenber ;
END vi deo;
/

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 39

Part B: Additional Practice 3 Solutions

3. Thebusiness hoursfor the video store are 8:00 a.m. to 10:00 p.m., Sunday through Friday, and
8:00 am. to 12:00 am. on Saturday. To ensure that the tables can only be modified
during these hours, create a stored procedure that is called by triggers on the tables.

a Create astored procedure called TI ME_CHECK that checks the current time against business
hours. If the current time is not within business hours, use the RAI SE_APPLI CATI ON_ERROR
procedure to give an appropriate message.

b. Createatrigger on each of the five tables. Fire the trigger before datais inserted, updated, and
deleted from the tables. Call your TI ME_CHECK procedure from each of these triggers.

c. Testyour trigger.

Note: In order for your trigger to fail, you need to change the time to be outside the range of your
current timein class. For example, while testing, you may want valid video hoursin your
trigger to be from 6:00 p.m. to 8:00 am.

CREATE OR REPLACE PROCEDURE ti me_check
IS
BEG N
| F ((TO_CHAR(SYSDATE, ' D') BETWEEN 1 AND 6)
AND
(TO_DATE(TO_CHAR(SYSDATE, 'hh24:m '), 'hh24:m’)
NOT BETWEEN
TO DATE(’ 08: 00', 'hh24:m’) AND TO DATE(’ 22:00°, 'hh24:m')))
OR
((TO_CHAR(SYSDATE, 'D) = 7)
AND
(TO_DATE(TO_CHAR(SYSDATE, 'hh24:m’), 'hh24:m ")
NOT BETWEEN
TO _DATE(’ 08: 00, "hh24:m ') AND TO DATE(’' 24: 00, 'hh24:mi’)))
THEN
RAI SE_APPLI CATI ON_ERROR(- 20999,
"Data changes restricted to office hours.’);
END | F;
END ti ne_check;
/

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 40

Part B: Additional Practice 3 Solutions (continued)

CREATE OR REPLACE TRI GGER nenber trig
BEFORE | NSERT OR UPDATE OR DELETE ON nenber
BEG N
ti me_check;
END;
/
CREATE OR REPLACE TRIGGER rental _trig
BEFORE | NSERT OR UPDATE OR DELETE ON rent al
BEG N
ti me_check;
END;
/
CREATE OR REPLACE TRIGGER title_copy_trig
BEFORE | NSERT OR UPDATE OR DELETE ON titl e _copy
BEG N
ti me_check;
END;
/
CREATE OR REPLACE TRIGGER title trig
BEFORE | NSERT OR UPDATE OR DELETE ON title
BEG N
ti me_check;
END;
/
CREATE OR REPLACE TRI GGER reservation_trig
BEFORE | NSERT OR UPDATE OR DELETE ON reservation
BEG N
ti me_check;
END;
/

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 41

Introduction to Oracle9i: PL/SQL - Additional Practice Solutions - 42

Additional Practices:

Table Descriptions and
Data

Introduction to Oracle9i: PL/SQL - Table Descriptions - 2

Part A

The tables and data used in part A are the same asthose in the appendix B, "Table Descriptions and
Data."

Introduction to Oracle9i: PL/SQL - Table Descriptions - 3

Part B: Tables Used

SELECT * FROM t ab;

| THAME | TABTYPE | CLUSTERID
IMEMBER TABLE |

IREMTAL TABLE |

RESERVATION TABLE

TITLE TABLE

TITLE_COPY TABLE |

Introduction to Oracle9i: PL/SQL - Table Descriptions - 4

Part B:
DESCRI BE nenber

MEMBER Table

| Hame | Null? | Type
IMEMBER_ID IMOT NULL INUMBER{10)
ILAST_MAME IMOT NULL WARCHARZ(25)
FIRST_MNAME | WARCHARZ(25)
ADDRESS | WARCHARZ(100)
lcITY | WYARCHARZ(30)
IPHONE | WARCHAR2(25)
\JOIN_DATE IMOT NULL \DATE
SELECT * FROM nenber;

IMEMBER_ID | LAST_NAME |FIRST_NAME | ADDRESS | CTY | PHONE |JOIN_DATE
101 [Welasguez |Carmen 283 King Street Seattle 587-39-6666 |03-MAR-30
102 |Mgao LaDoris |5 Modrany Bratislava |586-355-8882 |08-MAR-00
103 [Magayama |Midori |68 Wia Centrale \Sao Paolo |254-852-5764 |17-JUN-31
104 |Quick-To-See |Mark 5321 King Way LLagos [53-558-777 |07-APR-90
105 |Ropeburn |[Audry |36 Chu Street Hong Kong [41-559-87 | 04-MAR-90

106 |Urguhart Mol 3035 Laurier Blvd. Quebec |418-542-9988 |18-JAN-81
107 |Menchu IRoberta \Boulevard de Waterloo 41 |[Brussels |322-504-2228 |14-MAY-80
108 |Biri Ben 338 High St. (Columbus |614-455-9863 |07-APR-30
109 |Catchpole |Antoinette |88 Alfred St [Brishane |F16-309-1411 |09-FEB-02
110 [Haas James |Chestnut Street Boston |G17-123-4567 | 06-MAR-01
111 |Biri Allan \Hiawatha Drive IMewYork |516-123-4567 | 06-MAR-D1

\Carmen 283 King Street Seattle 587-08-6666 |03-MAR-30
113 [Noao ILaDoris |5 Modrany [Bratislava |586-355-8882 |08-MAR-80

114 [Nagayama |Midori 58 Wia Centrale \Sao Paolo |254-B52-5764 |17-JUN-81
MEMBER_ID |LAST_NAME |FIRST_NAME | ADDRESS | CTY | PHONE |JOIN_DATE

115 |Quick-To-See |Mark 5321 King Way LLagos [53-558-777 |07-APR-00

116 [Ropeburn |Audry |36 Chu Street Hong Kong [41-559-87 | 04-MAR-90

|
|
|
|
|
|
|
|
|
|
|
| 112 |‘Je|aaquez
|
|
|
|
|
|
|
|
|
|
|

117 |Urguhart IWtally 3035 Laurier Blvd. (Quebec |[418-542-3988 |18-JAN-91
118 |Menchu [Roberta |Boulevard de Wiaterloo 41 |[Brussels |322-504-2228 |14-MAY-80
119 |Biri Ben 388 High St. (Columbus |614-455-9863 |07-APR-30
120 |Catchpole |Antoinette |88 Alfred St [Brishane |F16-309-1411 |09-FEB-02
121 |Haas James |Chestnut Street Boston |G17-123-4567 | 06-MAR-01
122 |Biri llan Hizwatha Drive MewYork |516-123-4567 | 06-MAR-D1

22 rows selected.

Introduction to Oracle9i: PL/SQL - Table Descriptions - 5

Part B: RENTAL Table

DESCRI BE r ent al

| Hame | Mull? | Type
[BOOK_DATE IMOT NULL \DATE

\COPY_ID IMOT MULL IMUMBER{10)
IMEMBER_ID INOT NULL INUMBER(10)
TITLE_ID IMOT MULL INUMBER{10)
\ACT_RET_DATE | \DATE
[EXP_RET_DATE | \DATE

SELECT * FROM rent al ;

| BOOK_DATE | COPY_ID | MEMBER_ID |TITLE_ID | ACT_RET D | EXP_RETD
05-MAR-D1 | 2 | 101 | 93 | 07-MAR-01
04-MAR-D1 | 3 | 102 | 95 | 0B-MAR-01
03-MAR-D1 | 1] 101 | 95 | 05-MAR-01
02-MAR-D1 | 1] 106 | 97 [04-MARD1 [04-MAR-D1
03-MAR-D1 | 1] 101 | 92 [04-MARD1 [05-MAR-D1
0B-MAR-D1 | 2 | 10 | 95 | 09-MAR-01
05-MAR-D1 | 2 | 101 | 93 | 07-MAR-01
04-MAR-D1 | 3 | 102 | 95 | 0B-MAR-01
03-MAR-D1 | 1] 101 | 95 | 05-MAR-01
02-MAR-D1 | 1] 106 | 97 [04-MARD1 [04-MAR-D1
03-MAR-D1 | 1] 101 | 92 [04-MARD1 [05-MAR-D1

11 rows selected.

Introduction to Oracle9i: PL/SQL - Table Descriptions - 6

Part B: RESERVATI ON Table

DESCRI BE r eservati on

| Name | Mull? | Type

IRES_DATE INOT MULL \DATE

IMEMBER_ID INOT MULL INUMBER(10)

TITLE_ID INOT MULL INUMBER(10)

SELECT * FROM reservati on;

| RES_DATE | MEMBER_ID | TITLE_ID
05-MAR-01 | 101 | 93
04-MAR-O1 | 106 | 102
0B-MAR-01 | 110 | a8
05-MAR-O1 | 101 | 93
04-MAR-01 | 106 | 102
0B-MAR-01 | 110 | 98

B rows selected.

Introduction to Oracle9i: PL/SQL - Table Descriptions - 7

Part B: Tl TLE Table
DESCRIBE title
| Name | Null? | Type
TITLE_ID INOT MULL IMUMBER{10)
TITLE INOT MULL WARCHARZ(E0)
IDESCRIPTION INOT MULL WARCHARZ(400)
IRATING | WARCHARZ(4)
(CATEGORY | WARCHARZ(20)
IRELEASE_DATE | DATE
SELECT * FROM titl e;
TITLE_ID | TITLE | DESCRIPTION RATI [CATEGORY |RELEASE_D
willie and All of willie's friends made a Christmas list far
92 TR T ﬁ:tnta, hutWillie has vet to create his ownwish |G CHILD 058-0CT-95
Another installment of science fiction history.
93 |Alien Again Zan the heroine save the planet from the alien [R SCIFI 19-hAY-95
life farm?
94 [The Glob A meteor crashes near a small Americantown | o (o0 g 12-AUG-95
and unleashes carnivorous goo in this classic.
With a little luck and a lot of ingenuity, a teenager))
29| g7 DER B0 skips school for a day in Mew York, N e
96 |Miracles on ce A sieyear-old has doubts about Santa Claus. PG |DRAMA 12-SEP-85
But she discovers that miracles really do exist.
After discovering a cached of drugs, a younag
97 |Soda Gang couple find themselves pitted against a vicious [ME [ACTIORN 01-JUIM-95
gang.
93 |Interstellar Wars Futuristic interstellar action movie. Canthe PG |SCIFI 07-JUL-TT
rehels save the humans from the evil Empire?
wiillie and All of'Willie's friends made a Christmas list for
94 TR T ﬁ:tnta, hutWillie has vet to create his ownwish |G CHILD 058-0CT-95
Another installment of science fiction history.
100 |Alien Again Zan the heroine save the planet from the alien [R SCIFI 19-hAY-95
life form?
101 The Glob A meteor crashes ne_ar a small A_mer_lcan tu:m'-{n MR SCIFI 17-ALG-35
and unleashes carnivorous goo in this classic.
With a little luck and a lot of ingenuity, a teenager))
102] g7 DL B skips school for a day in Mew York, N e
103 |Miracles onlce [SPevBarold has doubts about Santa Claus. - lon Ipgays |12-5EP-95
But she discovers that miracles really do exist.
104 [Soda Gang couple find themseles pitted against avicious |ME JACTION 01-JUIm-95
gang.
105 Interstellar Wars Futuristic interstellar action movie. Can the PG |SCIF] 07-JUL-T7
rebels save the humans from the evil Empire?

14 rows selected.

Introduction to Oracle9i: PL/SQL - Table Descriptions - 8

Part B: TI TLE COPY Table

DESCRI BE title_copy

| Name | Hull? | Tyne
\COPY_ID [MOT MULL [NUMBER(1 0}

TITLE_ID [NOT MULL [NUMBER(1 0}

|STATUS [NOT MULL [VARCHARZ(15)

SELECT * FROM title_copy;

COPY_ID TITLE_ID | STATUS

02 |myalLABLE

93 |avalLABLE

33 |RENTED

04 |myalLABLE

95 |avalLABLE

95 |AyaILABLE

95 |REMTED

96 |mvalLABLE

07 |mvalLABLE

93 |REMTED

1
1
2
1
1
2
3
1
1
1
2

33 |RENTED

11 rowws selected.

Introduction to Oracle9i: PL/SQL - Table Descriptions - 9

Introduction to Oracle9i: PL/SQL - Table Descriptions - 10

